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Abstract
We analyze and overview some of the different types of unconventional quantum criticalities by
focusing on two origins. One origin of the unconventionality is the proximity to first-order
transitions. The border between the first-order and continuous transitions is described by a
quantum tricritical point (QTCP) for symmetry breaking transitions. One of the characteristic
features of the quantum tricriticality is the concomitant divergence of an order parameter and
uniform fluctuations, in contrast to the conventional quantum critical point (QCP). The
interplay of these two fluctuations generates unconventionality. Several puzzling
non-Fermi-liquid properties in experiments are taken to be accounted for by the resultant
universality, as in the cases of YbRh2Si2, CeRu2Si2 and β-YbAlB4. Another more dramatic
unconventionality appears again at the border of the first-order and continuous transitions, but
in this case for topological transitions such as metal–insulator and Lifshitz transitions. This
border, the marginal quantum critical point (MQCP), belongs to an unprecedented universality
class with diverging uniform fluctuations at zero temperature. The Ising universality at the
critical end point of the first-order transition at nonzero temperatures transforms to the marginal
quantum criticality when the critical temperature is suppressed to zero. The MQCP has a
unique feature with a combined character of symmetry breaking and topological transitions. In
the metal–insulator transitions, the theoretical results are supported by experimental indications
for V2−xCrx O3 and an organic conductor κ-(ET)2Cu[N(CN)2]Cl. Identifying topological
transitions also reveals how non-Fermi liquid appears as a phase in metals. The theory also
accounts for the criticality of a metamagnetic transition in ZrZn2, by interpreting it as an
interplay of Lifshitz transition and correlation effects. We discuss the common underlying
physics in these examples.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum phase transitions and unconventional quantum
phases are the subjects of recent intensive studies. In
particular, a number of strongly correlated electron systems
provide us with unconventional types of quantum critical
behaviors frequently accompanied by wide areas exhibiting

non-Fermi-liquid properties in metals. These range from rare-
earth compounds [1–3], transition-metal compounds [4] and
organic conductors [5], implying the existence of a universal
underlying physics.

A prototype of quantum critical phenomena is found in
the case where critical temperatures of spontaneous symmetry
breaking, such as magnetic ordering, are suppressed to zero, as
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Figure 1. Phase diagram around conventional QCP (a) (left panel),
and MQCP (b) (right panel for metal–insulator transition) in the
parameter space of temperature T , fields to control transitions h or A
and parameters to control quantum fluctuations � or B. The cone
structures schematically illustrate the quantum critical regions of the
QCP (a) and MQCP (b) depicted by the crosses. First-order
transitions occur when one crosses shaded (green) walls. The
quantum critical line (bold (blue) line) in (b) represents a continuous
topological transition at T = 0.

we see in figure 1(a), by enhancing some quantum fluctuation
�. The parameter �, enhancing the quantum fluctuations
of magnetic, charge or orbital orders in electronic systems,
is typically pressure or chemical doping, where itinerancy
enhanced by these control parameters increases quantum
fluctuations for the real space order realized by translational
symmetry breaking. Enhancing geometrical frustration effects
also increases quantum fluctuations. When the critical
temperatures are suppressed to be low, low-energy and long-
wavelength critical fluctuations of the order parameter start
showing quantum mechanical character. In itinerant electron
systems, this quantum critical fluctuation couples to low-
energy quasiparticle excitations around the Fermi surface
and leads to critical fluctuations qualitatively larger than the
insulating case. This coupled case has been extensively studied
by spin fluctuation theories developed by Moriya, Hertz and
Millis [6–8]. A feedback of the critical fluctuations to the
quasiparticle excitations leads to non-Fermi-liquid behaviors
typically observed in the region of a cone-shape structure,
as in figure 1(a). These standard spin fluctuation theories
have been successful in explaining a number of experimental
results on non-Fermi-liquid properties near the quantum phase
transitions [6, 9].

However, this standard theory has widely been challenged
by recent progress in experiments [1–3]. In some cases, critical
exponents do not follow the prediction of the standard theory.
In other cases, the critical region is unexpectedly large. An
important aspect ignored in the standard theory of quantum
criticality is the interplay of itinerancy with localization effects
caused by electron correlations. Low-energy incoherent
excitations on the verge of localization introduce a qualitatively
new feature.

In addition, novel quantum criticality in nature emerges
when quantum phase transitions are not the consequences
of the symmetry breaking. A completely different type of
unconventional quantum phase transitions appears associated
with topological change, such as metal–insulator and Lifshitz

transitions [10], when they are combined with electron
correlation effects as we describe in this paper.

In this report, we first review the understanding recently
achieved for several different types of unconventional quantum
criticalities. Among various types of approaches for the
unconventional quantum criticalities, we particularly focus on
the cases where proximity to first-order transitions severely
modifies the conventional quantum criticality. This universal
aspect offers a key for solving many puzzles and for
understanding unconventional features in experiments. The
proximity to the first-order transitions is sometimes detected
by signatures of spatial inhomogeneity and phase separations
when the jump of the first-order transitions occurs in density
under a fixed chemical potential. This inhomogeneity is the
subject of recent intensive studies in systems with competing
orders, although we do not go into the details of the issues of
the inhomogeneity and phase separation.

A proximity to the first-order transitions in classical
systems appears around the boundary between the continuous
and first-order transitions called the tricritical point (TCP) [11],
as is illustrated in figure 2(a). For example, at the TCP
of an antiferromagnetic transition under magnetic fields [12],
the jump of magnetization seen at the first-order transition
is suppressed to zero, while a singular divergence of the
magnetization slope as a function of magnetic fields appears.
Then a unique feature of the TCP driven by magnetic
fields is that the uniform magnetic susceptibility at zero
wavenumber diverges, in addition to the diverging order
parameter susceptibility at a nonzero wavenumber, although
it does not have a tendency for the ferromagnetic order at
all. If the critical temperature of the TCP is suppressed
to zero, this transforms to a QTCP, as we illustrate in a
schematic phase diagram figure 2(b). We discuss in section 2
how an unconventional criticality appears in the case of the
QTCP of the antiferromagnetic transition under magnetic
fields [13, 14], which has relevance in a number of f electron
systems including YbRh2Si2, CeRu2Si2 and β-YbAlB4. We
also discuss possible origins of the proximity to first-order
transitions, such as magnetic anisotropy and valence instability.

The proximity to the first-order transition appears in a
more dramatic way in the case of the topological change.
A simple example of the topological change is found
in a Fermi surface change such as a Lifshitz transition
and a metal–insulator transition between a band-insulator
and a metal. Although these topological transitions offer
continuous quantum phase transitions, they do not cause any
spontaneous symmetry breaking by themselves, while the
critical phenomena are rather trivial in noninteracting systems.
However, electron correlation introduces unprecedented
effects. When the correlation effects become large, these
transitions may become first-order transitions. The first-
order transition continues to finite temperatures and is
terminated at the finite temperature critical point. Then this
is well characterized by the conventional universality class
of symmetry breaking, where a similarity to the gas–liquid
transition may be identified. The boundary between the
first-order and conventional continuous topological transitions
illustrated in figure 1(b) contains both the characters of
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Figure 2. (a) Schematic phase diagram for continuous and first-order transitions together with classical TCP in the parameter space of
temperature T , quantum fluctuation g and field h Q conjugate to the order parameter m Q . Thin (green) lines represent critical lines of
continuous transitions, while the route crossing the shaded sheets realize first-order transitions. At h Q = 0, the bold (red) line represents the
first-order transition as well. The circle is the classical TCP while the squares illustrate the QCP. (b) Global phase diagram with a tricritical
line (TCL) separating the surfaces of the continuous (above TCL (green)) and the first-order (below TCL (red)) surfaces. Here g represents a
parameter to control quantum fluctuations. In YbRh2Si2, g may correspond to the pressure measured from the ambient one and h may be the
uniform magnetic field. The QTCP (circle) appears at (g, H, T ) = (gt , Ht , 0), namely the endpoint of the TCL at T = 0.

the topological and symmetry breaking transitions [15–18].
This point, called the MQCP, induces novel quantum critical
phenomena around it. We clarify this novel physics in
cases of metal–insulator transitions in section 3.1 and Lifshitz
transitions in section 3.2.

The first-order transition and its proximity around the
MQCP are the consequence of strong correlation effects,
though the topological nature survives. This compatibility is
more deeply understood by the differentiation of quasiparticles
in the momentum space. The electron differentiation appears
in such a way that some particular part in the Brillouin zone
shows strong correlation effects with precursory insulating
behavior while it leaves the other part coherent as a small
pocket of the Fermi surface. The transition takes place as a
topology change through the vanishing pockets [19, 20]. The
topological nature is better understood from the role of the
zeros of the Green function (the poles of the self-energy),
where the emergent zeros nonuniformly destroy the large
Fermi surface and leave the small pocket.

Through analyses on different types of the proximity to the
first-order transition, in this paper, we discuss the underlying
common physics with its relevance to experimental results for
unconventional quantum critical phenomena.

2. Quantum tricriticality

In the classical Ginzburg–Landau–Wilson (GLW) scheme, the
TCP is expressed by the φ6 theory [11]. The free energy F is
expanded up to the sixth order with respect to the scalar order
parameter m Q representing a spatial symmetry breaking at the
wavenumber Q as

F = rm2
Q + um4

Q + vm6
Q − hQm Q . (1)

If u > 0, r = 0 together with vanishing fields conjugate
to the order parameter, hQ = 0 represent a conventional
Ising-type critical point. If u < 0, u2 − 3rv > 0 and

hQ = 0, three minima at m Q = 0 and ±m Q0 with

m Q0 ≡
√

(−u + √
u2 − 3rv)/3v can represent the first-order

transition between m Q = 0 and ±m Q0. At hQ = 0, the
first-order transition for u < 0 and the continuous transition
at r = 0 for u > 0 merge at r = u = 0, which determines the
TCP. Physics of the TCP has extensively been discussed for
the mixture of 3He and 4He as well as for antiferromagnetic
transitions under magnetic fields [11]. A characteristic feature
of the TCP is that not only the order parameter susceptibility
diverges as χQ = (∂2 F/∂m2

Q)−1 = 1/r ∝ 1/(h − hc)

in this mean-field theory, but also the uniform susceptibility
χ0 = (∂2 F/∂h2) diverges, when the transition is controlled by
uniform fields h around the critical point h = hc. In fact, m Q

is scaled by m Q ∝ r 1/4 ∝ |h −hc|1/4 at u = 0 and the resultant
scaling of the free energy minimum F ∝ |h − hc|3/2 leads to
χ0 ∝ |h − hc|−1/2. This indicates the scaling of the uniform
magnetization m0 − m0c ∝ √

m Q when m0 is measured from
the critical value m0c. We note that this diverging χ0 as h → hc

has nothing to do with the ferromagnetic tendency but is just
the consequence of the tricriticality of the antiferromagnetic
transition. Because of the vanishing u and r , the free energy
becomes flattened around m Q = 0 and hence fluctuations
around the critical point become large in general. It also causes
the diverging uniform susceptibility.

When the tricritical temperature is suppressed by quantum
fluctuations, the QTCP appears. In this case, when the
transition occurs in metallic phases, the critical fluctuations of
bosons associated with the order parameter fluctuations couple
to the low-energy quasiparticle excitations near the Fermi
surface similarly to the conventional QCP in metals [6, 8].
However, in the case of the QTCP, it has features qualitatively
different from the conventional quantum criticality already
known in the classical case. To elucidate this, we have
proposed a spin fluctuation theory for the antiferromagnetic
QTCP [13, 14]. As in the classical case, under magnetic fields,
‘ferromagnetic’ quantum critical fluctuations develop around
the antiferromagnetic QTCP in addition to antiferromagnetic
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Figure 3. (a) Temperature dependence of inverse uniform magnetic
susceptibility χ−1

0 for YbRh2(Si0.95Ge0.05)2 at H = 0.03 T reported
in [23] illustrated as the broken (blue) curve compared with the
numerical result of spin fluctuation theory for the QTCP [13, 14],
shown as the solid (red) curve with filled circles. The deviation at low
temperatures appears because the experimental parameters deviate
from the QTCP. The solid (green) curve with triangles represents the
theoretical χ−1

Q . (b) Magnetic field dependence of magnetization
(broken (blue) curve) for YbRh2(Si0.95Ge0.05)2 at T = 0.09 K
reported in [23] compared with the QTCP theory (solid (red)
curve) [13, 14]. δM (δH ) represents the magnetization (magnetic
field) measured from the critical value. We estimate the experimental
critical magnetic field Hc (magnetization Mc) as 0.027 T (0.004 μB).

fluctuations, which is in sharp contrast with the conventional
antiferromagnetic QCP. For itinerant electron systems, it
has been shown that the temperature dependence of critical
magnetic fluctuations around the QTCP is given as χQ ∝
T −3/2 (χ0 ∝ √

χQ ∝ T −3/4) at the antiferromagnetic
(ferromagnetic) wavenumber q = Q (q = 0). The convex
temperature dependence of χ−1

0 ∝ T 3/4 is the characteristic
feature of the QTCP, which should not be seen in the
conventional spin fluctuation theory for the ferromagnetic
transition because the exponent 3/4 is smaller than unity
for the Curie law. The same scaling leads to the singular
magnetization process m ∝ |h − hc|1/2. It should be noted
that these critical exponents are completely different from the
conventional quantum criticality.

It has been shown that physics of the QTCP accounts
for several unconventional features of the quantum criticali-
ties and non-Fermi-liquid properties observed experimentally
in heavy-fermion systems such as YbRh2Si2, CeRu2Si2, and
β-YbAlB4 [13, 14]. For YbRh2Si2, the QTCP successfully re-
produces quantitative behaviors of the experimental ferromag-
netic susceptibility χ0 ∝ T −0.6 by an appropriate choice of
the phenomenological parameters. In fact, a crossover from
χ0 ∝ T −3/4 to χ0 ∼ T −0.6 with elevated temperatures pre-
dicted by the theory of the QTCP quantitatively reproduces the
experimental result, as seen in figure 3(a). The deviation at low
temperatures is ascribed to the deviation of the experimental
parameters from the right QTCP. Figure 3(b) also shows that
the magnetization curve follows the prediction of the quantum
tricriticality m ∝ |h − hc|0.5.

The quantum tricriticality also reproduces singularities
of other physical properties such as specific heat, nuclear
magnetic relaxation time 1/T1T , and the Hall coefficient
observed for YbRh2Si2. A simple argument [21] predicts that

the Hall coefficient RH is scaled by RH ∝ m†
Q

2
, while as is

mentioned above, m Q ∝ |h − hc|1/4 holds. Therefore, the Hall
coefficient is scaled by |h − hc|1/2 near the QTCP. This scaling
indicates that the Hall coefficient shows a singular change
near the QTCP. If the QCP in YbRh2Si2 is located on the
side of weak first-order phase transitions, the Hall coefficient
changes even jump at T = 0. A steep increase of RH in
the experiment [22] at low temperatures is consistent with the
present prediction.

Under magnetic fields h > hc, two characteristic
temperature scales are suggested in YbRh2Si2 [23, 24]; below
one scale (TLFL), the Landau Fermi liquid becomes satisfactory
while around the other scale T ∗, ∂ RH/∂ H , ∂ρ/∂ H , and
χ0 have peaks. We note that the coexistence of the
antiferromagnetic and ferromagnetic fluctuations is a possible
origin of the observed two energy scales: T ∗ is interpreted
as the energy scale where the uniform fluctuation χ0 starts
saturating and the response to the uniform magnetic field
shows an anomaly. The other is TLFL, below which the
antiferromagnetic fluctuations saturate. Since the growth of
the antiferromagnetic and uniform fluctuations both destroy the
Fermi liquid scaling, the real Fermi liquid shows up only when
both of them saturate, namely only below the lower scale TLFL.
Since both FM and AFM fluctuations diverge at the QTCP,
two energy scales T ∗ and TLFL vanish at the QTCP. This is
consistent with the experimental result.

Recently, it has been pointed out that the specific
heat exponent for the tricriticality scales as C ∝ |T −
Tc|−1/2 [25, 14] This is consistent with the experimental
observation [26].

The proposal for the proximity of the first-order transition
and the tricriticality is also supported from the real existence of
the first-order transition under pressure [27], where the jump
of the resistivity is clearly seen at 2.3 GPa under the magnetic
field H ‖ c around 2 T. Since the tricritical temperature is
around 0.5 K at this pressure, while the transition is always
continuous at ambient pressure, the QTCP has to show up
between these two pressures. The physics of QTCP can be
more definitely tested at this anticipated QTCP and we propose
experiments under the tuning of pressure. Recently, effects of
chemical pressure have been examined by substituting Co for
Rh [28]. It suggests a complex phase diagram: for a small
concentration of Co up to x = 0.28 for Yb(Rh1−x Cox)2Si2,
the transition becomes broadened without an indication of the
first-order transition under magnetic fields perpendicular to the
c axis. On the other hand, a first-order transition is signaled
for large x ∼ 0.68 under magnetic fields parallel to the c axis
and even in the absence of magnetic fields. The absence of the
first-order transition at small x was claimed [28] to contradict
the experiment under hydrostatic pressure [27], if the chemical
pressure and hydrostatic pressure could be mapped. However,
since the first-order transition under hydrostatic pressure is
observed only in magnetic fields parallel to the c axis, it is
required to examine the chemical pressure effect under the
same condition, because the mechanism may involve the effect
of magnetic anisotropy, as we will discuss below.

For CeRu2Si2 [29] and β-YbAlB4 [30] as well, the
quantum tricriticality is a presumable origin of the anomalous
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diverging enhancement of the uniform susceptibility observed
in these materials [14].

Let us discuss mechanisms of generating first-order
transitions. It is known that YbRh2Si2 and β-YbAlB4 have a
strong magnetic anisotropy. In fact, the QCP for YbRh2Si2

is realized at ∼0.06 T for the magnetic field perpendicular
to the c axis while 0.6 T is required for the field parallel to
the c axis. In classical metamagnetic systems, the single-
site anisotropy commonly causes a first-order (metamagnetic)
transition from an antiferromagnetic phase to a spin-flipped
paramagnetic phase under magnetic fields, as in the case of
FeCl2 [31]. The first-order transition under pressure is so far
observed only in magnetic fields parallel to the c axis [27],
which may be related to this type of the mechanism.

Another possible origin driving the first-order transition
is the valence instability in the f electron systems. The f
electrons located near the Fermi level can hybridize with the
conduction electrons c leading to the emergence of heavy-
mass quasiparticles through the Kondo effect. The valence
of the f electrons may abruptly change through the shift
of the f electron level relative to the conduction electrons
c and/or the competition among the conduction bandwidth,
the c–f hybridization, and the atomic f–f as well as c–
f electron correlations. This transition may lead to the
formation/destruction of the f electron local moment. This
dominates the physics of the γ –α transition of Ce [32]. The
valence transition sometimes occurs as a first-order transition.
If it happens as the first-order jump, the universality of the
valence transition is described by the type of the gas–liquid
transition with a finite temperature critical point characterized
by the Ising universality. When this critical temperature is
suppressed to zero, a conventional QCP that is equivalent to
that in figure 1(a) appears.

Now, if the valence transition equivalently described by
figure 1(a) occurs simultaneously with the magnetic transition,
this valence critical point (Tc line in figure 1(a)) may be
transformed to the tricritical point (tricritical line). This is
because even outside the shaded (green) sheet in figure 1,
the left and right sides of the shaded sheet have to be
distinguished by the symmetry difference of the simultaneous
magnetic transition. This means that the shaded (green) sheet
continues to form a sheet of continuous transition beyond the
Tc line. This is nothing but the appearance of the tricritical
line that replaces the Tc line in figure 1. In this sense, the
quantum tricriticality may capture relevant physics even when
the valence transition is on the verge of the magnetic first-order
transition.

A closely related idea is the localization transition of the
f electron through the Kondo collapse (Kondo breakdown),
namely the switch-off of the c–f hybridization disconnecting
the f electrons from the conduction band, for example, through
decreasing pressure. The Kondo collapse may take place either
as a continuous or a first-order transition. When it is combined
with a magnetic transition, the quantum tricriticality similar
to the case of the valence transition may occur. Therefore,
the quantum tricriticality may capture relevant physics even
when the valence transition or the so-called local quantum
criticality [21] is on the verge of the magnetic first-order
transition.

On the other hand, if the valence transition or Kondo
breakdown involves a topological change of the Fermi surface,
the transition may have a structure essentially described by
figure 1(b). In fact, this type of universality will be described in
section 3. Here we note that the Kondo breakdown interpreted
by the orbital-selective Mott transition of the f electrons indeed
suggests the applicability of the universality discussed in
section 3 [33, 34]. In this sense, the present classification and
concept of unconventional quantum criticality offer a useful
and general scheme for describing f electron systems.

3. Marginal quantum criticality

The proximity to the first-order transition appears in a different
way when the underlying quantum criticality belongs to a
different class. An intriguing issue is the quantum phase
transition that is driven not by spontaneous symmetry breaking
but by some topological change. In general, quantum phase
transitions caused by a change in topological number occur
in a wider class of phenomena, including the quantum Hall
effects [35] and topological insulators [36]. A simple example
is seen in the change in topology of the Fermi surface. In this
section, we visit two examples of this category.

3.1. Metal–insulator transition

The first example is metal–insulator transitions driven by
electron correlation effects. Such a well known example is the
Mott transition [4].

In general, the metal–insulator transitions in weakly
correlated systems take place either as the transition between
Fermi liquids and band insulators or as the Anderson
transitions driven by disorder. Both of these cases are
essentially identified as the transitions at zero temperature.
In these cases, unless some other origins such as a structural
phase transition drive the metal–insulator transition and force
discontinuous changes in the band structure through a strong
electron–lattice coupling, the phase transitions are basically of
continuous type.

However, when electron correlation effects play a role,
transitions may frequently appear as first-order transitions.
Even without a relevant coupling to the lattice, it is now
believed that first-order transitions generically appear in
nature. When the bandwidth is controlled either by pressure
or chemical pressure realized through chemical substitutions,
such first-order metal–insulator transitions are ubiquitously
observed. A well known example is found for V2−x MxO3

with M = Ti or Cr. In these compounds, the first-order
transition terminates at around 350 K, identified as the critical
point [37]. The universality class of this critical point has
been studied carefully from the conductivity exponent and it
has been established that it belongs to the Ising universality
class [38]. Although the order parameter is not trivial, the
transition is essentially described by the symmetry breaking
type. It indicates that this Mott transition is equivalent to
the gas–liquid transition that is known to be described by the
Ising universality. In fact, the natural order parameter is the
carrier density, as in the case of the density in the gas–liquid
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transition. The Ising universality also implies that the transition
is described by the conventional GLW scheme [39, 40].
This has immediately raised a fundamental question about
the nature of this class of metal–insulator transition, because
neither the metal to band-insulator transition nor the Anderson
transition are known to belong to this universality class.

A successful phenomenological description is constructed
starting from the free energy for the band-insulator metal
transition. When the Fermi level crosses the bottom (top) of
the band dispersion ε(k) ∝ kz for electrons (holes), the free
energy (or the energy at T = 0) of noninteracting electrons in
the metallic phase is given by

F0 ∝
∫ EF

0
dε εD(ε) ∝ X (d+z)/d , (2)

where EF is the Fermi energy and D(ε) ∝ ε(d−z)/z is the
density of states for spatial dimension d . The free carrier
density is taken as the natural order parameter and defined
as X � 0. In case of the generic dispersion expanded as
ε(k) ∝ ak2 + bk4 + · · ·, the free energy in the grand canonical
ensemble is reduced to

F0 ∝ −μX + c2 X (d+2)/d + c4 X (d+4)/d + · · · , (3)

with constants c2 and c4 and the chemical potential μ for the
carrier. In the insulating side, F0 = 0 is trivially satisfied.
Now the interaction energy may be introduced in the form of
an effective two-body interaction of carriers scaled as

F1 ∝ X2. (4)

Then the total energy (free energy) in the metallic phase is
given by

F = F0 + F1 = −μX +vX2 +c2 X (d+2)/d +c4 X (d+4)/d +· · · .
(5)

For d = 1, it turns out that the second lowest order term is
proportional to c2 while it is v for d = 3. Two-dimensional
systems have a unique feature, because the terms proportional
to c2 and v are the same order. As we see below, this leads to
an unconventional dynamical exponent z = 4 for the critical
point μ = v + c2 = 0. It is now clear that though it has an
expansion in terms of X , this form of the free energy does not
follow the simple GLW scheme in any dimension. In fact when
one moves the chemical potential as the control parameter, the
expansion (5) is justified only in the metallic phase for larger
μ, while the free energy in the insulator side described by
smaller μ has the minimum zero always at X = 0, that means
this piece-wise analytic character does not allow the analytic
expansion of the free energy itself, in contrast to the case of
equation (1). This breakdown originates from the fact that
the metal–insulator transition between X = 0 and X > 0 is
dominated by the topological character of the Fermi surface
pocket on the verge of the transition. The transition is not
originally described by any type of symmetry breaking but by
the topological change in the ground state, where the singular
form of the density of states D determines the nonanalytic
expansion.

Let us focus on the two-dimensional case, where
equation (5) is reduced to

F = AX + B X2 + C X3 + · · · . (6)

Then the effective interaction (quadratic term) is proportional
to B . When B is positive, the metal–insulator transition occurs
as a continuous transition by controlling A through zero.
However, if the effective interaction B is driven to a negative
value, a first-order transition occurs at a certain A > 0. The
first-order transition is transformed to the continuous one at
the MQCP determined by B = 0 and A = 0. The universality
class of the MQCP is unconventional and is characterized by
the critical exponents in the standard notation as

z = 4, α = −1, β = 1, γ = 1,

δ = 2, ν = 1/2 and η = 0.
(7)

For the parameter for the first-order transition, B < 0, the
jump of X obviously continues to nonzero temperatures and
the jump terminates at the critical point. For the critical point at
T > 0, the free energy form (6) is no longer valid, because the
singular form of D is immediately smeared out by the Fermi
distribution at T > 0. Then the double minima form of the free
energy expansion is regular as

F = −μX + A′X2 + B ′X4 + · · · , (8)

which leads to the conventional Ising universality class [15–18].
Now it turns out that the MQCP is sandwiched by the topolog-
ical quantum critical line for B > 0 at T = 0 and the Ising
critical line at T > 0, as is sketched in figure 1(b). The uncon-
ventionality arises from this emergent character, which appears
at the marginal point between the Ising-type symmetry break-
ing and the topological transition of the Fermi surface at zero
temperature [15–18].

It has been shown that even Hartree–Fock approximations
of an extended Hubbard model on square lattices are capable of
such metal–insulator transitions with unusual criticality under
a preexisting symmetry breaking [17, 18]. In this case, the
above free energy expansion can indeed be obtained from
microscopic models, analytically as well as numerically. The
obtained universality perfectly agrees with the above critical
exponents and with a number of numerical results beyond the
mean-field level as well [41, 42], implying that the preexisting
symmetry breaking assumed in the Hartree–Fock study is not
necessary for this unconventional universality. Furthermore,
examinations of fluctuation effects indicate that the critical
exponents remain essentially exact beyond the mean-field
level, except for the possible logarithmic correction, because
the upper critical dimension dc is given by [18]

dc = γ + 2β

ν
− z = 2. (9)

The critical exponents identified by the conductivity
measurements for V1−x Crx O3 at finite temperatures [38]
agree with the Ising exponents derived here. On the other
hand, an organic conductor κ-(ET)2Cu[N(CN)2]Cl has a
low-temperature critical point of the metal-Mott-insulator
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transition, where the same conductivity measurement has
revealed unconventional exponents β ∼ 1, γ ∼ 1 and
δ ∼ 2 [43]. These observations perfectly agree with the
universality class of the MQCP.1 In fact, the exponents for
the MQCP at T = 0 survive as crossover exponents and
dominate even at the nonzero-temperature critical point [18],
as in the case of κ-(ET)2Cu[N(CN)2]Cl. The careful
experimental results in (V, Cr)2O3 and κ-ET-type organic
conductor κ-(ET)2Cu[N(CN)2]Cl support the existence of the
present marginal quantum criticality connecting the Ising-
type critical line and the topological quantum critical line.
The thermal expansion coefficient α(T ) = l−1 dl/dT of
κ-(ET)2Cu[N(CN)2]Cl has also been reported to have an
anomaly [46]. Since the data seem to strongly depend on
the form of the distribution of the transition temperature,
it is difficult to determine the exponent of the singularity
quantitatively. Nevertheless, this anomaly can be qualitatively
interpreted by the singularity of the mobile carrier density,
because the lattice expansion linearly couples to the carrier
density (see footnote 1). If the present quantum criticality also
dominates for a uniform system, we expect the exponent of
ζ = −1/2 for α(T ) ∝ (T − Tc)

ζ , because the temperature
axis crosses the transition from the metallic to insulator side
and ζ generically probes 1/δ − 1.

To obtain direct evidence of the critical exponents, it is
desirable to precisely determine the singularity of the carrier
density. Finding a system with a lower critical temperature
and revealing behaviors of Fermi surface topology are also
very important challenges left for the future in this fundamental
issue of the quantum Mott transition.

It is highly suggestive in terms of possible superconduct-
ing mechanisms that the MQCP emerges on the verge of the ef-
fective interaction of carriers driven to be attractive. Although
the Ising critical point appears when the effective interaction
is driven to be attractive, as in the case of the liquid–gas tran-
sition, for the superconducting pairing, the attractive interac-
tion leading to the Cooper pairing has to be realized in the re-
gion of the Fermi degeneracy. This is only possible around the
MQCP [44].

The present results imply that the metal–insulator
transition is governed by a topological change in the Fermi
surface with shrinkage (or emergence) at selected momentum
points even when the interaction effects dominate. This is
different from other types of scenario, such as that from
the dynamical mean-field approximations, where the metal–
insulator transition is governed instead by the vanishing
renormalization factor Z and a large Fermi surface is retained
even on the verge of the transition. On the verge on the metallic
side, the topological character suggests that the Fermi surface
is reduced to small pockets, which violates the Luttinger sum
rule. If the system undergoes a Lifshitz transition from a large
to a small Fermi surface, this violation is allowed on the side of
the small pockets. The dynamical mean-field theory improved
by including the momentum dependence of the self-energy
indeed suggests the existence of such a Lifshitz transition [47],

1 An attempt to justify both of these different criticalities within the scenario
of the conventional Ising universality for the classical Mott transition has been
given by [45].

and the resultant shrinking small Fermi pockets in the absence
of the translational symmetry breaking [20, 48].

In the mechanism of realizing the topological character
of the metal–insulator transition, it has turned out that the
zero of the single-particle Green function plays an important
role [20, 49–51]. The single-particle Green function is defined
as

G(k, ω) = 1

ω − ε(k) − �(k, ω)
, (10)

where � is the free energy and ε is the dispersion of the
noninteracting part. Now, when ω is largely negative, Re G <

0 must always be satisfied, while Re G > 0 for largely positive
ω. Thus a sign change has to occur at an intermediate value
of ω at least once. In metals, the sign change indeed occurs
through Re G = ±∞, obtained from the pole of the Green
function ω = ε(k) + �(k, ω), which determines the Fermi
surface of metals at ω = 0. However, the sign change may
also occur through Re G = 0, which corresponds to the pole
of the self-energy �. In fact, the above sign change in G has
to occur between ω � 0 and ω � 0, even in insulators, while
the Fermi surface does not exist in insulators at all. The sign
change in insulators actually occurs through the zeros of the
Green function. Since ε(k) < 0 at the Brillouin zone center (�
point) while it is positive at the zone boundary (for example, at
(π, π) in 2D systems), Re G has to change sign between these
two point at ω = 0, which determines the Fermi surface in
metals. Even in the Mott insulator, this sign change equally
has to occur; the only way in which this is possible is through
the zeros of G. Therefore, a zero surface has to cross the
Brillouin zone at ω = 0.2 Since the self-energy is divergent
at the zeros, the perturbation expansion obviously breaks down
at the zeros. For the continuous metal–insulator transitions,
the poles cannot be replaced with the zeros abruptly at the
transition, while poles completely disappear on the insulator
side at ω = 0 and the zeros dominate. This means that the
emergence of the zeros has to already occur on the metallic side
with a progressive replacement of the poles with zeros. When
a topological transition ascribed to the interaction effects, such
as a transition of zeros emergence or a Lifshitz transition,
occurs at ω = 0, this is the point of the breakdown of the
Fermi liquid in the strict sense, and non-Fermi liquids show
up, because the system is no longer adiabatically connected to
the noninteracting system. It is clear that the breakdown of the
Fermi liquid occurs in an inhomogeneous way in the Brillouin
zone, depending on the distance from the zeros. Near the zeros,
the quasiparticles become more incoherent because of the
enhanced � and it introduces the differentiation of electrons.
It has been shown that such a differentiation of electrons
eventually leads to a breakup of the original large Fermi surface
by the interference and penetration of the zeros to the poles.
After the destruction of the original Fermi surface caused by
the zeros, the remaining part of the Fermi surface becomes
pockets and the pockets shrink to disappear at the topological
metal–insulator transition. From this clarification, it turns out
that the topological character of the metal–insulator transition
clearly leads to the emergence of a non-Fermi liquid as an

2 For an example of an insulator that does not require the zero surface at
ω = 0, contrary to the present discussions, see [52].
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extended phase realized by the appearance of the zeros. Effects
of zeros and differentiation of electrons on the thermodynamic
as well as transport properties are not fully understood yet, and
left as intriguing issues.

3.2. Lifshitz transition

A topological change in the Fermi surface called the
Lifshitz transition was originally studied for noninteracting
electrons [10]. Recently, interaction effects on the Lifshitz
transitions have been systematically studied [53]. When the
electron Coulomb interaction is switched on, a first-order
transition may appear similarly to the case of the metal–
insulator transition discussed in section 3.1. The marginal
point between the continuous and first-order transition lines
again appears as the MQCP. When the Lifshitz transition takes
place in the ferromagnetic phase and the first-order transition
is driven by magnetic fields, it also appears as a metamagnetic
transition.

Similarly to the case of metal–insulator transitions
described by equation (5), when a Fermi pocket vanishes at
a Lifshitz transition, the free energy can be expanded by the
magnetization �m and magnetic field �h, both measured from
the critical point as [53]

F = −�h�m + v(�m)2 + c2(�m)(d+2)/2 + · · · . (11)

Equation (11) is obtained from F0 ∝ (�m)(d+z)/z instead of
equation (2), because of �m ∝ EF and EF ∝ X z/d . If a neck
of the Fermi surface changes its topology [53], it is expanded
in two dimensions as

F = −�h�m+v(�m)2+c2l
(�m)2

ln 1
|�m|

+c4(�m)3+· · · , (12)

and in three dimensions as inferred from equation (11) as

F = −�h�m+v(�m)2+c2(�m)5/2+c3(�m)3+· · · , (13)

for the disconnected side of the neck-collapsing transition and

F = −�h(�m) + v(�m)2 + c3(�m)3 + · · · , (14)

for the connected side.
In fact, this mechanism in three-dimensional systems has

been proposed to be relevant in the unconventional criticality
of the metamagnetic quantum critical end point for ZrZn2 [54].
Itinerant ferromagnets, such as ZrZn2 [55, 56] and UGe2 [57],
and nearly ferromagnetic metals, such as Sr3Ru2O7 [58], show
metamagnetic transitions. The magnetizations show jumps at
magnetic fields separating the low-field phase from the high-
field phase with a higher magnetic moment. The first-order
transition terminates at a finite temperature critical point. The
universality around the critical point is again regarded as the
Ising-type, which is equivalent to the gas–liquid critical points.
The critical temperature can, however, be controlled to zero,
for example, by pressure, which offers a QCP. A possible
connection of these QCPs to non-Fermi-liquid behavior, as
well as to the superconductivity found in UGe2, has stimulated
extensive studies [59].

Figure 4. Magnetic field dependence of magnetization, both
measured from the critical point. Theoretical prediction [54] of the
MQCP plotted as the solid (black) curve reproduces the experimental
results for ZrZn2 given by the dashed (red) curve [56]. This is
evidence for the MQCP described by δ = 3/2.

These metamagnetic transitions have first been analyzed
by the conventional framework of the quantum criticality of
symmetry breaking [60]. However, it has been proposed that a
topological change in the Fermi surface of the neck-collapsing
type is responsible for the metamagnetic behavior for ZrZn2,
on the basis of the analyses by band structure calculation [54].
Then the free energy has the form of equations (13) and (14). In
this case, the critical exponent δ, defined by �m ∝ |�h|1/δ, is
given by δ = 3/2 for the side of the disconnected neck and δ =
2 for the side of the connected neck. This is in sharp contrast
with the Ising universality value δ ∼ 4.8. It is largely different
even from the Ising mean-field value δ = 3. This exponent
predicts a convex curve for the inverse of uniform magnetic
susceptibility χ−1

0 as a function of magnetization, as χ−1
0 ∝

|�m|1/2 on the disconnected side. This remarkable feature is
consistent with the experimental indications by Uhlarz et al
[56], as illustrated in figure 4.

4. Discussions

We have discussed mechanisms of several unconventional
quantum criticalities associated with the proximity to first-
order transitions. The first case is the quantum tricriticality in
metals, where the conventional theory of quantum criticality
for symmetry breaking transitions is substantially modified
by the coupling of three low-energy modes, namely, uniform
excitations, the order parameter, and quasiparticle excitations.
The second case is topological transitions of a Fermi surface
coupled to electron correlations, including metal–insulator
transitions and Lifshitz transitions.

In all the cases, the proximity is a source of the
unconventional non-Fermi liquid. The quantum tricriticality
generates a crossover region of a non-Fermi liquid at nonzero
temperatures while Fermi liquids are recovered at sufficiently
low temperatures, except for the exact QTCP. On the other
hand, if the symmetry breaking is suppressed, the continuous
topological transitions accompany an extended area of a non-
Fermi-liquid phase caused by the zeros of the Green function.
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Although the MQCP generates a cone-shape structure of
the critical region, similarly to the conventional quantum
criticality, as we saw in figure 1(b), the unconventional metals
have wider extension as a phase because of the electron
differentiation caused by the penetrating zeros. In this respect,
the physics of the metal–insulator and Lifshitz transitions
awaits further studies, not only on the criticality, but also on
the extended non-Fermi-liquid phase. First-order transitions
may also introduce an extended spatially inhomogeneous
region in the parameter space, including phase separations.
Unexpectedly wide regions of non-Fermi liquids, recently
pointed out in various experiments, may have a connection
to this topological aspect combined with the proximity to the
first-order transition3. Another intriguing issue is to elucidate
the universality of the possible MQCP for other topological
transitions, such as transitions of quantum Hall states and
topological insulators.
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Mod. Phys. 79 1015
[3] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[4] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys.

70 1039
[5] Kanoda K 2006 J. Phys. Soc. Japan 75 051007
[6] Moriya T 1985 Spin Fluctuations in Itinerant Electron

Magnetism (Berlin: Springer)
[7] Hertz J A 1976 Phys. Rev. B 14 1165
[8] Millis A J 1993 Phys. Rev. B 48 7183
[9] Moriya T and Takimoto T 1995 J. Phys. Soc. Japan 64 960

[10] Lifshitz I M 1960 Sov. Phys.—JETP 11 1130
Lifshitz I M 1960 J. Exp. Theor. Phys. (USSR) 38 1569

[11] For a review, see Lawrie I D and Sarbach S 1984 Phase
Transition and Critical Phenomena vol 9, ed C Domb and
J L Lebowitz (London: Academic) p 2

[12] Misawa T, Yamaji Y and Imada M 2006 J. Phys. Soc. Japan
75 064705

[13] Misawa T, Yamaji Y and Imada M 2008 J. Phys. Soc. Japan
77 093712

[14] Misawa T, Yamaji Y and Imada M 2009 J. Phys. Soc. Japan
78 084707

[15] Imada M 2004 J. Phys. Soc. Japan 73 1851
[16] Imada M 2005 Phys. Rev. B 72 075113
[17] Misawa T, Yamaji Y and Imada M 2006 J. Phys. Soc. Japan

75 083705
[18] Misawa T and Imada M 2007 Phys. Rev. B 75 115121
[19] Tahara D and Imada M 2008 J. Phys. Soc. Japan 77 093703
[20] Sakai S, Motome Y and Imada M 2009 Phys. Rev. Lett.

102 056404
[21] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature

413 804

3 For the possibility of a more extended non-Fermi liquid phase, see [61].
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